
FORTRAN 77

The Programmers Companion

PRIME
Computer

The Programmer's Companion is a new series of pocket-
size, quick-reference guide to Prime Software products.

Written and published by Prime Computer, Technical
Publications Department, 500 Old Connecticut Path,
Framingham, MA 01701, telephone (617) 879-2960 8:30-
5:00 PM. Eastern Time.

Copyright © 1980 by Prime Computer.
Printed in USA. All rights reserved.

The information contained in this document is subject to
change without notice and should not be construed as a
commitment by Prime Computer, Incorporated. Prime
Computer assumes no responsibility for errors that may
appear in this document.

This document reflects the software as of Master Disk
Revision 17.

Printing history:

First printing. August 1980 15M

Credits:

Research and copy Design and production
John Mann William Agush
Typesetting Cover design
J.L. Associates William Agush

Printing and binding Paper
Mark-Burton S.D. Warren (Cover)

Finch Paper (Text)

TABLE OF CONTENTS

Typographic conventions .
Legal character set
Line format
Data types
Statement label
Operands
Operators
Type conversion
Program composition
Program specification state

Assignment statements
ASSIGN 14
BLOCK DATA 14
CALL 14
COMMON 14
CONTINUE 14
DATA 15
DIMENSION L5
DO IS
END 15
ENTRY 15
EQUIVALENCE 16
EXTERNAL 16
FUNCTION L6
GO TO 16
IF 17

Input/Outpul statements .
BACKSPACE 19
CLOSE 20
FORMAT 20
INQUIRE 20
OPEN 23

Formats
Lisl directed I/O
Intrinsic functions
The F77 compiler
ASCII collating sequence .
Powers ol 2

ments
13 IMPLICIT 17

SINSERT 17
INTRINSIC 17
LIST 17
NO LIST 18
PARAMETER 18
PAUSE 18
PROGRAM 18
RETURN 18
SAVE 18
STOP 19
SUBROUTINE 19
TYPE 19

PRINT 25
READ 25
REWIND 25
WRITE 26

CONVENTIONS

TYPOGRAPHIC CONVENTIONS
The following conventions are used in this Programmer's
Companion:

Braces < > Braces indicate a choice
of options or arguments.
Unless the braces are en­
closed by brackets, one
choice must be selected.

Brackets [] Brackets indicate thai
the item (Mi closed is
optional.

Ellipsis . . . An ellipsis indicates that
the preceding item may
be repeated.

Parentheses () When parentheses ap­
pear in a statement for­
mal, they must be in­
cluded literally when the
statement is used.

WORDS-IN-UPPER-CASE Uppercase letters iden­
tify command words or
keywords. They are to be
entered literally.

words-in-lower-case Lowercase letters iden­
tify options or argu­
ments. The user sub­
stitutes an appropriate
numerical or text value.

LEGAL CHARACTER SET
Any ASCII character may appear in FORTRAN 77
character data, Hollerith constants, and I/O files. In pro­
gram source statements, the legal characters are:

The 26 uppercase letters A-Z
The 26 lowercase letters a-z
The 10 digits 0-9
The 13 special characters = ' : + - * / () , . $ _ (or —)
Blanks or spaces

LINE FORMAT

LINE FORMAT
Each program line is a string of 1 to 72 characters. Each
character position in the line is called a column, numbered
from left to right starting with 1. The following is a
schematic of a program line:

COMMENT

STATEMENT

ll
M
I I

C
i [

II
H
II

II
| l
l l

1 1
1 l
l I
COMMENT TEXT
1 1
1 1
1 1
1 1

I . -« STATE
1 1
1 1
1 1

CONTINUATION bbbbb .' -^
II I I
I' I I
l l I I
l l I I

CONTROL SCONTBOL

- STATEMENT CONTINUATION-

SEQUENCE NUMBER

jawa - STATEMENT LABEL (OPTIONAL)
bbbbb BLANKS

v - BLANK OR ZERO
/ - ANY CHARACTER EXCEPT BLANK OR ZERO

Note: bbbbb may lie a statement number but control
cannot be transferred to it.

DATA TYPES

DATA TYPES
CHARACTER

A sequence of bytes, each holding one ASCII character.

Range:
Constant:

1 to 32767 characters
'cccccc'. Represent an internal single quote
with two consecutive single quotes.

COMPLEX (COMPLEX^)

Two REAL*4 numbers representing the real
imaginary parts.

Bytes:
Range:
Constant:

4 + 4
Each component has same range as REAL
[Real— part. Imaginary.. part] In for­
matted I/O, the parentheses and comma are
omil ted.

COMPLEX*16

Two DOUBLE PRECISION numbers representing the real
and imaginary parts.

Bytes:
Range:

Constant:

8 + 8
Each component has same range as
DOUBLE PRECISION
(Real_part , Imaginary_par t) In formatted
I/O, the parentheses and comma are
omitted.

DATA TYPES

DOUBLE PRECISION (REAL*8)

A real number in double precision form.

Bytes:
Range:
Constant:

Precision:
Value:

8
± (10 **-9902 to 10**9825)
[±] man t i s sa Df ±] exponen t . The
mantissa optionally may contain a decimal
point.
47 bits or 14 decimal digits
mantissa * (2**(exponent))

INTEGER (INTEGER*4 or Long Integer)

An integer in twos-complement form.

Bytes:
Range:

Constant:

4
-(2**31)
Decimal
Octal :0
Decimal
Octal

to (2**31-1)
-2147483648 to 2147483647
to -.37777777777
| ±]ddddd
[±]:ddddd

No decimal point may appear in an INTEGER data item.

INTEGER*2 (Short integer)

An integer in twos-complement form.

DATA TYPES

Bytes:
Range:

Constant:

2
-(2**15) to (2**15-1)
Decimal -32768 to 32767
Octal :0 to -.177777
Decimal [±] ddddd
Octal [±]:ddddd

No decimal point may appear in an INTfIGER*2 data item.

LOGICAL

Hold ,i Logical value. All bits are zero except the last,
which may be zero (false) or one (true).

Bytes:
Range:
Constants:

1, 2. or 4
True or false
.TRUE, (or T in an input file)
.FALSE, (or F in an input file)

LOGICAL* 1 is provided only as an aid to program conver­
sion.

REAL(REAL*4)

Holds a rea

Bytes:
Range:
Constant:

Precision:
Value:

number in single-precision form.

4
± (10 **-38 to 10**38]
[±] mantissa [E[±] exponent]
The mantissa must contain a decimal point
if the exponent is omitted, but otherwise
need not.
23 bits or 6 decimal digits
Mantissa * (2**(exponent))

STATEMENT LABEL 8 OPERANDS

STATEMENT LABEL
A statement label is an integer constant that is prefixed to
a statement. A label may appear anywhere in columns 1-5.

Range: 1 to 99999
Constant: Slabel or * 1 abe 1. (Statement label constants

are used in alternate returns from sub­
routines.)

OPERANDS
Arrays

An array is an ordered, possibly multidimensional set of
variables. An array is declared in a DIMENSION.
COMMON, or type-statement such as:

DIMENSION array declarator [,array declarator]...

where each "array declarator" has the form:

ANAME (dl[.d2]...[,d7l)

in which ANAME is the name the array is to have (same
rules as for a variable name), and each dn has the form:

[Ln:]Hn

Ln is the lower subscript bound, and Hn is the upper sub­
script bound, for dimension n. There may be at most seven
dimensions. If Ln is omitted, it is assumed to be 1.

FORTRAN 77 arrays are stored by columns: the leftmost
subscript varies most rapidly when the array is accessed
in storage order.

Constants

A constant is a literal representation of a value. The
correct form for a constant of each data type is shown
above in the description of the type.

Parameters

In FORTRAN 77, a parameter is a named constant, not an
element in the argument list of a subprogram entry point.
A parameter is declared in a PARAMETER statement and
may be used wherever a constant could be used, except in
a FORMAT statement. Parameter names follow the same
rules as variable names.

OPERATORS

Variables

A variable is a data item whose value may be assigned
during program execution. Variable names may contain
from 1 to 32 characters. Character 1 must be alphabetic;
the rest must be alphanumeric, S. or *. Users are dis­
couraged from using "$" in their variable names because
this character is used extensively in Prime-supplied soft­
ware names, where it serves to implement a system of
naming conventions.

When no type is explicitly declared, a variable whose
name begins with the letters I through N becomes type
INTEGER, and a variable whose name begins with A-H or
O-Z becomes type REAL. This convention can be over­
ridden by a type-statement or an IMPLICIT statement.

OPERATORS
Logical operators

.NOT.

.AND.

.OR. (non-exclusive)
•EQV.
.NEQV.

NOT, AND, and OR are generally known. The truth tables
for EQV and NEQV are:

.EQV.: (P .EQV Q) is the logical equivalence of P and Q.

Q
.TRUE.
.FALSE.

P
.TRUE.
.TRUE.
.FALSE.

.FALSE.

.FALSE.

.TRUE.

.NEQV.: (P .NEQV. Q) is the same in effect as (.NOT. (P

.EQV. Q)). It acts as an exclusive or.

Q
.TRUE.
.FALSE.

P
.TRUE.
.FALSE.
.TRUE.

.FALSE.

.TRUE.

.FALSE.

OPERATORS 10

Arithmetic

**

/
+

=

operators

Exponentiation
Multiplication
Division
Addition
Subtraction or Unary Minus
Assignment

Relational op

.1/1'.

.I.E.

.F.Q.

.NE.
,GT.
.GE.

erators

Less than
Less than or equal to
Equal to
No! equal to
Greater than
Greater than or equal to

Character operator

Concatenation

Operator priority

**

* or /
+ or -

//
.I.T. .LE.
.NE. .C/I
.NOT.
.AND.
.OR.
.EQV. .N

.EQ.
. .GE.

EQV.

Exponentiation
Unary Minus
Multiplication or division
Addition or subtraction
Concatenation
Relational operators
(All have same priority.)
Logical negation
Logical intersection
Logical union
Logical equivalence/
nunequivalence

Order of evaluation

Operators of higher priority are evaluated before;
operators of lower priority. Operators of equal priority
are evaluated right-lo-left in the case of multiple
exponentiation, and left-to-right otherwise. Expressions
within parentheses are evaluated before operations out­
side the parentheses are performed.

The F77 compiler sometimes re-arranges mathematical
expressions inlo equivalent forms which can be evaluated
more quickly. When this occurs, evaluation order may not
be strictly as described. However, the compiler a lways
respects the inlegrity of parentheses. Where evaluation
order is critical, use parentheses to specify it uniquely.

TYPE CONVERSION 1 / PROGRAM COMPOSITION

Function references may be evaluated in any order. The
order used cannot be specified by the programmer.

TYPE CONVERSION
Arithmetic conversion

The type of the result when differing numeric types are
combined will be that of the operand having the higher
type in the following list:

COMPLEX*! 6
COMPLEX*8
DOUBLE PRECISION
REAL
LONG INTEGER
SHORT INTEGER

For Example REAL + SHORT INTEGER is a REAL

Special case: To prevent loss of precision, the result-type
when COMPLEX'S and DOUBLE PRECISION data are
combined will be COMPLEX*16.

Caution
When long integers are converted to
reals, there may be a loss of precision.

Character conversion

When one character ilem is assigned to another, and their
lengths are not (he same, padding or truncation takes
place on the right.

Logical conversion

The storage length of the result when logical data of
differing lengths are combined is the longer of the two
lengths.

PROGRAM COMPOSITION
Each program unit consists of a number of program lines.
Program lines are grouped and ordered as shown in the
following table. Vertical boundaries in the table denote
classes of statements that can be interspersed. Horizontal
boundaries denote classes of statements that cannot be
interspersed.

PROGRAM COMPOSITION 12

Any number of program units may be present in a single
File. Only comments may appear between the END state­
ment of one program unit and the header statement of the
next.

In F77, no block of executable code can cross a segment
boundary. Therefore, no program unit may produce more
than 128K bytes (one segment) of code. Rarely if ever will
a program unit be any larger than this; one that is must be
broken up. The local data for an F77 program unit is kept
in its stack frame (dynamic data) and link frame (static
data). Neither of these frames may be larger than a seg­
ment. One that is must be reduced in size by moving some
of its data to COMMON.

The names of F77 program units may not be more than 8
characters long. Additional characters will be ignored
and a warning message printed.

13 SPECIFICATION STATEMENTS

PROGRAM SPECIFICATION
STATEMENTS

l» Assignment Statements

target = expression

An assignment statement evaluates the expression and
assigns its value to the target. Where type conversion is
required it occurs automatically.

The value of a logical expression will be converted when
necessary to the storage length of the target. The value of a
character expression will be padded or truncated on the
right when necessary to match the length of the target.

An arithmetic target can be assigned a value of any arith­
metic type. The following table gives the results of mixed-
type arithmetic assignments.

Value

Type

1*2

1*4

REAL

DOUBLE

ca

C*16

1*2

ASSIGN

T R U N G

A S S I G N

SFIX

A S S I G N

SFIX

A S S I G N

SFIX*

A S S I G N *

SFIX*

A S S I G N '

Target Type

1-4 REAL DOUBLE

E X T E N D FLOAT 1)1 i n . \ T

A S S I G N A S S I G N ASSIGN'

A S S I G N

LFIX

A S S I G N

I.FIX

A S S I G N

LFIX*

A S S I G N *

LFIX*

A S S I G N *

FLOAT

A S S I G N

A S S I G N

FLOAT

A S S I G N

A S S I G N *

FLOAT*

ASSIGN*

DFLOAT

A S S I G N

DFLOAT

ASSIGN

A S S I G N

DFLOAT*

A S S I G N *

ASSIGN

C-8

FLOAT

ASRBAL

FLOAT

ASREAL

AS REAL

FLOAT

A S R E A L

ASSIGN

FLOAT

A S S I G N

CMB

DFLOAT

ASREAL

DFLOAT

A S R E A l

DFLOAT

ASREAL

ASREAl

DLFOAT

A S S I G N

A S S I G N

Operation Action
ASSIGN: Transmit value (after any indicated con­

version] to the target.
ASREAL: ASSIGN value as above to the real part of a

complex number, and set the imaginary
part of the complex number to zero.
Discard fraction, leaving a whole number.
Convert result to a short integer. Overflow
may occur.
Discard fraction, leaving a whole number.
Convert result to a long integer. Overflow
may occur.

SFIX:

LFIX:

ASSIGN 14 CONTINUE

FLOAT: Convert value to REAL form. Loss of pre­
cision may occur if the argument was
DOUBLE PRECISION, COMPLEX*Hi. or
INTEGER*4. Overflow may occur with
DOUBLE PRECISION or COMPLEX* 16.

DFLOAT: Convert value to DOUBLE PRECISION
form.

EXTEND: Prefix the short integer with 16 binary O's
or l's if the short integer was positive or
negative, respectively. This cannot change
Ihe value or sign of the integer.

TRUNC: Discard the 16 high-order bits of the long
integer. A value outside the short-integer
range will be altered, and possibly changed
in sign, by this operaion.

An asterisk affixed to an operation involving a complex
number indicates thai Ihe operation is to be performed on
the real pari only — Ihe imaginary pari is not involved.
When no asterisk is present, the operation is lo be per­
formed on both parts oi the number.

•ASSIGN k TO i

Assigns a statement number k lo the integer variable i.

•BLOCK DATA |name|

Header statement for a block data subprogram.

•CALL subroutine [([argument f,argument]...))]

Calls the specified subroutine with an optional lisl
oi arguments.

• COMMON /x/a [,/x/a]... (Comma is optional)

Defines COMMON blocks. Each x is a COMMON block
name (named COMMON) or is omitted leaving Iwo
adjacent slashes (blank COMMON). Each a is a lisl of
da l,i elements. A COMMON block name may have a I most
eight characters.

• [Label] CONTINUE

The CONTINUE statement does nothing. Control pro­
ceeds to the nexl statement lo be executed.

DATA 15 ENTRY

• DATA k/d/ [,k d]... (Comma is optional)

Initializes variables or array elements k to the values d at
load time.

• DIMENSION array declarator [.array declarator)...
Each array declarator is as described under ARRAYS

(a b () v i |.

A DIMENSION statement declares a symbolic name
typed in a type-statement, or by default, lo be an array,
and sets the number of dimensions and the bounds of each
dimension of the array.

A list of arrays can be declared and typed in one statement
by replacing the keyword DIMENSION above with any
data-type specifier.

• DO label [.] i ml. m2. [,m3]

label: The statement number of the last state­
ment (usually a CONTINUE) to be
executed by the DO-loop

i: An INTEGER. REAL, or DOUBLE PRE­
CISION variable used as the index

ml, m2. m3: INTEGER. REAL, or DOUBLE PRE­
CISION expressions representing the
initial, limit, and increment values re­
spectively for the index i. The default for
m3 is one.

The FORTRAN 77 DO-loop differs in many ways from the
FORTRAN IV DO-loop. Programmers not completely
familial- with the FORTRAN 77 version should consult
the FORTRAN 77 Reference Guide.

• END

The final statement of a program, subroutine (including a
BLOCK DATA subroutine) or external function. Tells the
compiler thai it has reached the physical end of the pro­
gram unit.

• ENTRY name |([argument [.argument)...))]

Specifies a secondary entry point in a subprogram,
assigns its name, and specifies its dummy arguments.

EQUIVALENCE 16 IF

• EQUIVALENCE (k ,k [,k]...) [,(k ,k [,k]... }] . . .

Causes all the items mentioned in each parenthesized list
to be stored beginning with the same byte of physical
storage. When variables of different lengths are equiv-
alenced the shorter is stored in the first bytes of the
longer. When specific array elements are equivalenced,
the arrays as wholes become correspondingly aligned.

• EXTERNAL subprogram [.subprogram]...

Allows the subprograms specified to be passed as argu­
ments to other subprograms, where they may be used
directly, or declared EXTERNAL and passed again.

• [type] FUNCTION name ([argument [.argument]...])

Declares a program unit to be a function, assigns its name
and type, and specifies its dummy arguments. If no typeis
declared in the FUNCTION statement, the typing can be
done in an ordinary type-statement. If no type is declared
anywhere, default typing will occur.

• G O T O i [] ,] (k[,k]...)]

(Assigned.) The i is an integer variable, and each k is the
label of an executable statement in the program unit con­
taining the assigned CO TO. Prior to executing the
assigned GO TO, a statement label value must be
assigned lo i using the ASSIGN statement. Transfers
control to the statement whose label was assigned to i.

• GO TO (k [,k]...) [,] i
(Computed.) Transfers control to the statement whose
label is in the n'lh position in Ihe list of k's when integer
expression i =n. If there is no n'th statement label, control
passes to the next executable statement after the com­
puted GO TO.

• GO TO k

(Unconditional.).Transfers control to statement k.

• IF (e) statement

(Logical.) The e is a logical expression and statement is
any statement except a DO, Logical-IF, block-IF, ELSE IF,
ELSE, or END IF statement. If e is true, the statement is
executed; if e is false, control passes to the next executable
statement.

IF 17 LIST

• IF (e) THEN
statements]

"ELSE IF (e) THEN~]
[statements]

"ELSE
[statemer

END IF

(Block.) Allows a block of statements to be executed if an
associated logical expression e is true, or skipped if it is
false. Scans a series of such blocks, executes the first
whose expression is true, and skips over the remaining
blocks automatically.

jnts]J

There may be any number of ELSE IF statements, or none.
There may be at most one ELSE statement, which must
follow any ELSE IF statements. The blocks may contain
any number of statements, or none.

• IMPLICIT type (list) [.type (list)]...

Allows the programmer to override the language con­
vention for default data-typing by first letter. Each type is
a data type such as REALM, COMPLEX, etc. Each
list lists the letters which will cause default to that type.
Letters may be separated by a comma, or an inclusive
group of letters may be indicated with a dash.

• SINSERT insert-file

Inserts into the program, at compilation time, the file
whose pathname is insert-file. The SINSERT command
cannot be nested. It must begin in column I.

• INTRINSIC name [.name]

Each name is the name of an F77 intrinsic (built-in)
function. Allows the functions listed to be passed as argu­
ments to subprograms, which may then reference the par­
ticular function passed.

• LIST

Reverses the effect ofa NO L/STstatemenl: source-listing
generation resumes (or begins) following the LIST state­
ment. The LIST statement does not of itself cause source
listing to be generated.

NO LIST 18 SAVE

• NO LIST

If a source listing of any kind has been specified in the
compiler options, a NO LIST statement will suppress
generation of the listing for source linos following the
statement. Otherwise, NO LIST has no effect.

• PARAMETER (p=c [,p=c]...) (Parentheses optional)

The p's are symbolic names previously typed in any
standard way, or by default. Each c is a constant ex­
pression of a type appropriate to the corresponding p. A
PARAMETER statement declares each p to be a para­
meter (a named constant) having the value given by c.

• PAUSE [n]

n is an optional decimal number of up to five digits, or a
character constant. Halts the program and prints
****PAUSE n at the terminal. Typing in the command
START causes execution of the program to resume at the
next executable statement following the PAUSE.

• PROGRAM name

Gives a name to a main program. This statement is not
required. If present, it must be the first statement ol the
main program.

• RETURN [n]

Used in a subprogram to cause return to the calling
program unit. Any number of RETURN statements may
appear. In a .subroutine, the integer expression n may be
specified. Execution of RETURN n causes return to the
statement ol the calling program unit whose label was
passed as the n'th statement-label dummy argument in
the subroutine argument list. If there is no such argument,
a normal return occurs.

• SAVE[v[,v]...]

Causes the subprogram variables and arrays named in it
to retain their values between invocations (static storage)
rather than losing their values when the subprogram
returns (dynamic storage). If no v's appear, the SAVE is
taken to include all local data items.

STOP 19 I/O STATEMENTS

• STOP [n]

The n is an optional decimal number of up to five digits, or
a character constant. Halts program execution, closes all
file units referenced by the program, prints ****STOP nat
the terminal, and returns control to the PRIMOS level. A
STOP statement may appear anywhere in a program unit.

• SUBROUTINE name [([argument [.argument]...])]

Declares a program unit to be a subroutine, assigns its
name, and specifies its dummy arguments.

• typek[/d/J [,k[d]]...

Each k is a data item name: each d is a value (or list of
values for an array) which if present will be used to
initialize the corresponding k. Allows override of the
implicit type assignments of symbol names which would
otherwise be done by an IMPLICIT .statement or by
default.

INPUT/OUTPUT STATEMENTS
FORTRAN and PRIMOS use different numbering con­
ventions for the set of file units. Beware of confusing the
two systems.

FORTRAN
unit-number
1
2
3
4
5-20
21-24
25-28
29-139

PRIMOS device
User terminal
Paper tape reader/punch
Parallel interface card reader
Serial line printer
Funit 1-16
9-track magnetic tape unit 0-3
7-track magnetic tape unit 0-3
Funit 17-127

BACKSPACE (1UNIT= [units [,IOSTAT= ios] [,ERR=
label])

The options are as described for the OPEN statement.

Moves the pointer of a file open for sequential access back
to the beginning of the previous record. Cannot be used on
unformatted varying-length records, or on records
written using list-directed I O.

CLOSE 20 INQUIRE

• CLOSE ([UNIT=]unit# [,STATUS= stat] [,ERR= label]
[,IOSTAT= ios])

The CLOSE statement disconnects a file from a unit. ERR=
and IOSTAT= have the same significances as in the OPEN
statement. STATUS= determines the final disposition of
the file. The argument stat is a character expression
which may have the values:

KEEP'

DELETE'

The file will be retained after it is closed.
This is the default for non-SCRATCH files.
and must not be given for SCRATCH files.
The file will be deleted after it is closed.
Default for SCRATCH files.

The options used may be given in any order, except that
if UNIT= is omitted, unit** must appear first.

• ENDFILE ([UNIT=]unit# [,IOSTAT= ios] [,ERR= label])

The options are as described for the OPEN statement.

Writes a device-specific endfile record on the file
connected lo the file unit unit**. The pointer is left
positioned after the endfile record. This statement can
also be used to truncate a file.

On a DAM file, no endfile record should ever be written.

• Label FORMAT (format)

The FORMAT statement provides one way to specify a
format for a READ, WRITE, or PRINT. Formats are
described below under FORMATS.

• INQUIRE statement

INQUIRE ([FILE [filename or |UNIT>]unil» [.IOSTAT" ios|
|.ERK s| (.EXIST" ex] |.OPENED = od| |.NUMBER; num|
|.NAMEI) = nmcl| [,NAME = fn| [ACCESS = acc|
[.SEQUENTIAL" seq| [.DIRECT' dir| [.FORM lm|
[.FORMATTED" fmt] |, UNFORMATTED= unf| |,REC1. rcl|
|.NEXTREC= nr| [.BI.ANK= blnkfl

Used lo ascertain the properties ol a file, or ol its
connection lo a unit.

The file must be specified by name (INQUIRE by name) or
unit (INQUIRE by unit) but not both. Options may appear
in any order, but no option may appear more than once. If
FILE= (orUNIT=) is omitted, the filename (orunit#) must
appear first.

INQUIRE 21 INQUIRE

The INQUIRE statement opiions are defined as follows:

Specifier
F1LE=

U N I T

10STAT=

ERR=

EXIST

OPENED-

NUMBER-

N A M E D

N A M E

ACCESS-

S E Q U E N T I A L -

DIRECT

Argument Data

Charai

Integer

Integer

Stalem

Logics

Logical

Integei

Logica]

Charac

Charac

Charac

Charac.

Type

tt-r Expression

*4 Expression

*4

ml nurn

*4

'4

"4

*4

I T

C I

er

I T

Signif icance of Possible Values

Specifies file by name.

Specifies file by uni l number.

Zero: no error condit ion exists.

Posit ive: error condi t ion exists.

Control transfers to statement indi ­

cated it error occurs t iur in j *

INQUIRE statemenl execution.

.TRUE.: the file exists | ln r IN­

QUIRE !>v name] or the uni l exisls

(for INQUIRE by un i t] .

.FALSE.: the f i l e o r the uni t does nol

.TRUE.: tin- file is open | INQUIRE

by name] or the file unit is open

[INQUIRE In- unit) .

.FALSE.: the file or the unit is nol

open.

Variable supplied is set to the tile's

unit-number. If there is none, var i ­

able becomes undefined.

.TRUE.: the fi le has a name.

.FALSE.: the unit has no name.

Variable is set to the file name If

none in file not ronnei ted. \ aria tile

becomes undefined.

'SEQUENTIAL ' : file open lor se­

quential .u i ' 58

'DIRECT': f i le open lo r direct

access.

l i n omes undefined if f i le is closed.

'YES': file call lie connected for se­

quential .I. cess

'NO': l i le cannot be connected for

sequential access.

' U N K N O W N ' : su i tab i l i t y of the fi le

for sequential access cannot he

determined.

'YES': i i le i an he connected for

direct access.

'NO': f i le cannot he connected for

direct access.

'UNKNOWN": su i lah i l i l v of f i le for

direct accesat .moot be determined.

INQUIRE 22 INQUIRE

FORMATTED Character

UNFORMATTED= Cha

lnleger*4

NEXTREC lnleser*4

Bt.ANK= Charactei

'FORMATTED': open For foi matted
data transfer.

'UNFORMATTED': open For unfor­
matted data transfer.

Bei nines undefined if file is noi
open.

'YES': file consists ol formatted
records.

'NO': file consists of unformatted

'UNKNOWN': record type cannot
be determined,

'YES': file consists of unformatted
records.

'NO': file consists ol formatted
records.

'UNKNOWN': record type cannol
be determined.

Variable is sei in the record-length
for which the file is open. Becomes
undefined it file consists of vary-
ing-length records nr is closed.

Variable is assigned the value n+1
where n is the record number ol the
last record re.nl or writtenona file
connected for direct ac< ess. II no
records have been rend or written,
[he variable is set to I. II the File is
not • innei led fordireel at i ess. oi il
the position DI the File p ter is
indeterminate due to n previous
error, the variable becomes unde­
fined

'ZERO': non-leading hi,inks in
numerii fields will be i on* ei ted to
/ .ernes.

'NULL': non-leading hi,inks in
numeric fields will be deleted.

I! the file is not open For Formatted
data transfer, the variable becomes
undefined.

http://re.nl

OPEN 23 OPEN

(»- OPEN | [UNIT = [unite [.FILE fili!name| |.STATUS= stat] |.AC:CESS
acc| [.FORM fm| |.RECL = reclngth] [.BLANK- blnk| |.ERR-
label) |.IOSTAT ios))

An OPEN statement may be used to create a new file and
establish its basic properties, and/or to connect a file to a
File unit and establish the properties of the connection.

The options used may be given in any order, except that if
UNIT= is omitted, units must appear first.

The OPEN statement options are defined as follows:

Option Argument Data-Type Results of Arguments Specified
UNIT= Integer*-! Expression File is opened on the file-unit spec­

ified.

FILE= Character Expression The file has the name specified. A
pathname may be used. II no FII.E-
is specified for 8 new non-scratch
file, the file will be named Fsnnn
where nnn is the number of the file-
unil on which i he file was opened,

STATUS' Character Expression 'OLD': Specified if Ihe file already
cxisls.

'NEW: Specified il the file is being
created.

'SCRATCH': File is temporary: il
will be automatically deleted ,ii
program end. No file name may be
specified.

'UNKNOWN': [Default] Specified
if Ihe slalus is not known lo Ihe
programmer. The processor will
determine the appropriate status.

ACCESS- Charactei Expression 'SEQUENTIAL': (Default] File is
connected for sequential access.

'DIRECT': (File is connected for di­
rect access.

OPEN 24 OPEN

Character Expression

lnleger*4 Expression

'FORMATTED': (Default under se­
quential access) File is connected
for formatted data transfer.

'UNFORMATTED': (Default under
direct access) File is connected for
unformatted data transfer.

Seta record length for a file of
fixed-length records. Must be
omitted for a file of varying-length
records. Use in SAM files is an F77
extension. Required in DAM files.

Character Expression This item specifies treatment of
blanks in numeric input fields
when data is read into the file.

'NULL': (Default) All blanks are
deleted, and digits compressed to
the right side of the input field. An
all-blank field will be interpreted
as a zero value.

'ZERO': All but leading blanks are
converted to zeroes, as in FOR­
TRAN lifi.

Statement Label

IOSTAT= lnteger*4 Variable

Control transfers to statement
specified if an error occurs during
execution id the OPEN statement.

Set to zero if the OPEN statement
executes successfully. Set positive
on error in OPEN statement
execution.

PRINT 25 REWIND

'PRINT format [.output list]

A PRINT is a simplified WRITE, equivalent to WRITE (1,
format) [output list]. Theformat is described under FOR­
MATS, below.

READ Statement

Sequential: READ (|UNIT=]unit» [. [FMT (format | [.END label]
[.ERR^ label] |.IOSTAT = ios]] | inpul list]

ANS direct: READ (|UNIT=]unit# |. [FMT' Jformat], REC records
|,END^ label] |.ERR= label] [,IOSTAT> ios]]
[input list]

IBM direct: READ (unit » records |,(FMT [format] | , E \ D = label]
[.ERR label] |.10STAT ios| | [input list]

Transfers a record from the file open on uni ts to the vari­
ables listed in input list. The format is described under
FORMATS, below.

The READ statement options are defined as follows:

Option
UNIT-

FMT =

END =

ERR

IOSTAT=

A
Inl

Set

Inl

Inl

Inl

rgumcnt Data-Type
:gor Expression

FORMATS below

•air Constant

iger Constant

!g(i Variable

Results of Arguments Specified
.Specifies the unit on which the
file is open.
II present, the READ is For­
matted: otherwise il is unfor-
niatled.
On endfile, control will transfer
to the i n d i c a t e d l a b e l l e d
statement.
()n error, control will transfer to
the indicated labelled statement.
Thr variable will he set lo a posi­
tive value if an error occurs, zero
if the READ executes success­
fully and a negative value if end-
File was encountered and no error
occurred.

•REWIND ([LJNIT=]unit# [,IOSTAT= ios] [,ERR= label])

The options are as described for the OPEN statement.

Repositions the file pointer lo Ihe initial point of a file,
either by physically rewinding a tape, or by resetting a
disc file's logical pointer.

WRITE 26 FORMATS

•WRITE statement

Sequential: WRITE (|UNIT= |unit» [,[FMT= |formal | [,ERR= label)
[.IOSTAT" ios]) |oulpul list)

ANS direct: WRITE (|UNIT= (units [,[FMT« |formal | ,REC= records
| ,ERR= label] [.IOSTAT- ios]) |output list]

IBM direct: WRITE (uni ts ' records | . |FMT = |format] (.ERR- label]
(.!OSTAT= ios]) (output list]

Transfers the values listed in output list to a record in Ihe
file open on unit#. The format is described under FOR­
MATS, below.

The WRITE statement options have the same meaning as
the READ statement options. Since end file is not possible,
there is no END= option, and IOSTAT= will never receive
a negative value.

FORMATS
Formatted data transfer occurs when a format is given in a
READ. WRITE, or PRINT statement. The format desig­
nates a formal list — a parenthesized list of I/O des­
criptors — which is to be used in formatting Ihe data.
A format may be:

• The statement number of a FORMAT statement
. An INTEGER variable that has been ASSiGNed

such a number
• A fixed-length (no adjustable-length components)

character expression whose value is a format list
. A CHARACTER array, array element, variable, or

constant whose value is a format list
• An asterisk, denoting list-directed I/O.

Types of I/O descriptor

There are Iwo types of I/O descriptors: lield descriptors,
which specify the conversions for individual dala items.
and edit-control descriptors, which specify more general
aspects of the data transfer process. Field descriptors are
further subdivided into numeric and non-numeric
descriptors.

Numeric descriptors in general

The numeric field descriptors are D, E. F, G, and I. The
following rules apply to all numeric descriptors.

FORMATS 27 FORMATS

1. Leading blanks are not significant for input. For
output, leading zeroes are suppressed. A minus
sign is printed for a negative number, but a positive
number is left unsigned.

2. For input with F, E. D, and G descriptors, a decimal
point in the input field over-rides the d specifica­
tion in the descriptor.

3. For output, fields are right justified. If the field
width is insufficient, asterisks are produced.

4. Excess digits of precision may be specified on input
to non-INTEGER numeric data types. The excess
will be ignored.

5. See the BLANK= option of the OPEN statement for
the rules concerning blanks in input fields.

A complex number consists of a pair oi real or double pre­
cision numbers. It is edited wilh an appropriate pair of
real or double precision field descriptors. The fact that the
two numbers form one entity mathematically is irrelevant
to input 'output. Edit-control descriptors may appear
between the two field descriptors.

Conventions

The following conventions are used in the discussions of

I o
w

d

e

n

descriptors:

The size in characters of the external field to/from
which the data is being transferred
The number of places to the right of the decimal
point
The number of exponent digits to be displayed on
output.
Any integer in the range appropriate to the parti­
cular case.

Descriptors

• A[w] Character

w is required for input, but optional for oulput. In the
following. L is the length of Ihe character item being
edited.

FORMATS 28 FORMATS

Input: If w >= L, the rightmost L characters are
taken from the external input field. If w < L,
the w characters are left justified in the data
item and padded with blanks.

Output: If w > L, the characters are printed right
justified in the field, preceded by blanks as
needed. If w < = L, the leftmost w characters
are printed. If w is not specified it is
assumed to be equal to L.

• B 'string' Business

Prints templated numerical output for business purposes.

Features include: Fixed and floating signs, trailing signs,
plus sign suppression, trailing minus change to'CR', fixed
and floating $, field filling, leading zero suppression, and
insertion of commas. The length of the string determines
the field width: if the length is greater than the field width,
the output is printed as a string of asterisks.

String Symbol
+

+ . . . +

-
-...-
$
$...$
Z

,
CR

*

B Format Characters
Usage

Fixed Sign
Floating sign
Fixed sign, plus sign suppression
Floating sign, plus sign suppression
Fixed currency sign
Floating currency sign
Print digits 1-9, replace leading zeroes
with blanks
Print digits 0-9
Position of decimal point
Position of comma
Trailing blank (positive) or CR
(negative)
Fill field with asterisks

No repeat count is allowed on an individual B descriptor,
but a B descriptor may be included in a group that is
repeated.

FORMATS 29 FORMATS

•BN BZ Blank Control

The method of handling blanks in numeric input fields
that is established for a file by the BLANK= option of the
OPEN statement may be temporarily over-ridden by BN
or BZ. The method may be altered as often as desired, and
will revert to the BLANK= value when the READ state­
ment is complete. Blank control descriptors have no effect
on output.

BN:

BZ:

All blanks will be deleted, and digits com­
pressed to the right side of the input field. An
all-blank field is interpreted as a zero value.
All but leading blanks will be converted to
zeroes, as in FORTRAN 66.

• D w d Double Precision

Edits a double precision number.

Input:
Output:

Operates exactly like
Operates exactly like
no Ee present, except
tuted wherever an "E'
output field.

an E descriptor.
an E descriptor with
that a "D" is substi-
would appear in the

• Ew.d[Ee] Real (exponential)

Edits a REAL or DOUBLE PRECISION number with an
exponent.

Input:

Output:

The exponent may be omitted. E+00 will be
assumed.
If Ee is present, e digits of 1 he exponent will
be printed.
If Ee is omitted, the appearance of the expo­
nent will be as follows:
Value of Appearance of
Exponent Exponent
-99 «S exp sj 99 E ± zz
-999 s£ exp<-99 -zzz (no "E")
99<exp sg 999 +zzz (no "E")
-9999 < exp<-999 =zzz (fourth digit lost)
999 < e x p ^ 9999 Szzz (fourth digit lost)

Note thai the number is always normalized. For non-
normalized output, use a scale factor.

FORMATS 30 FORMATS

• Fw.d Real (non-exponeniial)

Writes a real number without an exponent. Reads any real
or double precision number.

w is the size of the lield, including blanks, the si«n, and the
decimal point.

d is the number of places to the righl ol I he decimal point.

Input:

Output:

T h e dec ima l point m a y be o m i t t e d f rom the

field. T h e rightmost d d ig i t s wi l l be in te r ­

p re t ed as dec ima l d ig i t s , If a d e c i m a l point

is p r e s e n t , i ts pos i t ion o v e r - r i d e s d. Inpu t

f ields a p p r o p r i a t e for E a n d D e d i t i n g wil l

a l so w o r k for F ed i t ing .

d d e c i m a l p o s i t i o n s a re a l w a y s w r i t t e n .

• Gw.dfEeJ Real (General)

Edits real data whose magnitude is loo unpredictable lo
allow use of D, E, or F.

Input: T h e G d e s c r i p

descriptor.
Output: T h e G d e s c r i p t

Magnitude (M) of Real
Data Item

0.1 <= M < 1
I <- M < 10
to <= M < Kin

IO**(d-2) <= M • <l0**(d-11
I0**(d-i) <= M • <10**(d]
Otherwise
w h e r e n is 4 for G w . d an

toi

or

I e-

is e q u i v a l e n t to the F

icts as fo l lows:

G descriptor
acts as:

F(w-n) .(I. nX
F(w-n | . (d- l | . nX
F(w-n).(d-2), nX

F(w-n). I. nX
F(w-n).0, n.X
Ew.d[Ee]

H2 lor G w . d E e

II M < .()] or M >= 10**d, then Gw.d is equivalent to
kPEw.d, where k is the currenl scale factor.

For input, the Gw.dEe lield descriptor is healed iden­
tically to the Gw.d descrip lor. For output, Gw.d He acts as
Fw.dEe if 0.1 <= M < I0**d, and acts as Ew.d.Ee other-

FORMATS 31 FORMATS

•Iw[.n] Integer

Edits a long or short integer. The n is the minimum num­
ber of places to be displayed on output. Leading zeroes
will be printed if necessary.

• Lw Logical

Edits a LOGICAL data item.

Input: A valid input field consists of optional
blanks, optionally followed by a decimal
poinl, followed by a T or an F. The T or F
may be followed by additional characters
in the field: they will be ignored.

Output: The outpul field consists of w-1 blanks fol­
lowed by a T or F. as the value of the
internal datum is true or false, respectively.

• n P Scale Factor

The scale factor n is an unsigned or negative integer con­
stant. The comma following a P descriptor is often
omitted, so that it becomes a prefix of a subsequent field
descriptor. The scale factor has various effects, depend­
ing on the descriptor type and the direction of data
transfer.

F, E, D, and G input: If there is an exponent in the field, the
scale factor has no effect. Otherwise, il converts the data
so that:

External Value = Internal Value*(10'"k)

F output: The scale factor converts the value as for F
i n p u I.

E and D output: The mantissa is multiplied by 10**kand
the exponent is reduced by k to maintain the same overall
value. This permits output of E and D numbers in non-
normalized form.

G output: If the G is acting as an F. the scale factor is
ignored. II il is acting as an E, the scale factor behaves as
described for E output.

Once a scale factor has been used, it remains in effect for
all subsequent descriptors of appropriate type, until il is
reset to another value or to zero. When a formal list is
rescanned. the scale factor is not reset to zero auto­
matically. If a scale factor is to affect only one field, "OP"
must appear before the next scalable descriptor thai
occurs.

FORMATS 32 FORMATS

• SP SS S Sign Control

These control the placement of plus signs in numeric out­
put. Once ;i sign control descriptor is encountered, it
remains in effect until it is explicitly altered or revoked.

SP: The processor will print a plus sign wherever
one may optionally appear.

SS: The processor will not print any plus sign
whose appearance is optional.

S: The processor will return to the locally defined
system default for sign editing.

• T n TLn TRn Tab Control

These move the logical pointer which designates the next
position in the record that will be read or written.

Tn: Tab to column n of the record
TLn: Tab n columns left of the current position
TRn: Tab n columns right of the current position.

If an attempt is made to tab off either end of the record, the
pointer will remain at the position adjacent to the end.
Positions left undefined through use of the T descriptor
lor output will be filled with blanks.

• nX Space Skipping

On input, equivalent to TRn. On output, equivalent to a
character constant of n blanks.

• : (Colon) Conditional Output

A colon placed in a format list will cause data transfer to
terminate at thai point if no items remain in the output
list. A colon is ignored on input.

• / (Slash) Record-Skipping

A slash in a format list causes I/O processing to proceed to
the next record. As many new records will be begun as
there are slashes. The effect of slashes at the beginning or
end of a format list is additional to the automatic begin­
ning of a new record with each data transfer statement.

FORMATS 33 FORMATS

Input: Under sequential access, a slash causes the
remaining portion of the current record to
be skipped, and the file pointer to be posi­
tioned at the beginning of the next record,
making it the current record. Under direct
access, the remainder of the record is
skipped, the record number increased by
one, and the file pointer positioned at the
beginning of the record that has that record
number.

Output: Similar to input, except that all positions
skipped over will be filled with blanks.

Commas adjacent to slashes may be omitted.

' c c c . c ' Character Constant

Each c is any ASCII character (not necessarily a member
of the F77 character set).

A character string may appear as a constant in an output
format list. Such a string contains its own data, obviating
the need for a corresponding item in the output data list.
When the string is encountered during the scan of the
format list, the characters it contains are written to the
current record. A character constant may not appear in a
format list used for input, and may not be modified by an
individual repeal count.

Carriage control

The first character of each record in a file to be printed
controls vertical spacing, and is not printed. The remain­
ing characters in the record are printed starting at the left-
hand margin. The significance of the permissable
carriage-control characters is:

Charac
Blank
0 (zero)
1
+

er Vertical Spacing Before Printing
One line
Two lines
To first line of next page
No advance (overprint of last line)

Records that contain no characters, generated by slash
ed i l i n g o r b y a n empty output list, cause a b l a n k l i n e t o b e
printed.

FORMATS 34 FORMATS

Repeat counts

A repeat count is an integer constant prefixed to a field
descriplor, or to a parenthesized portion or the entirely of
a format list. Individual edit-control descriptors can nol
have repeat counts. As data transfer proceeds, the format
list items modified by the repeat count will be re-used the
number of limes specified before format control proceeds
lo subsequent format list items. Repeat counts have a
maximum nesting of I en levels.

Rescanning format lists

If the formal list is exhausted before the I/O list, the file
pointer is positioned at the beginning of the next record;
formal control then reverts to the beginning of the portion
of the format list that was terminated by the last preced­
ing right parenthesis. If there is no such parenthesis,
format control reverts to the beginning of the formal list,
Any repeat counl preceding the rescanned format is re­
used. On output, the current record is padded with blanks
and a new record started. On input, the remainder of the
current record is skipped, and the file pointer advanced to
the beginning of ihe next record. Reversion of format
control, of itself, has no effect on the scale factor, the sign
control (S, SP, SS), or the blank control (BN, BZ] in effect
at the time of reversion.

35 LIST DIRECTED I/O

LIST-DIRECTED I/O
List-directed I O occurs when an asterisk appeal's as
the format in a READ, WRITE, or PRINT statement. List-
directed I O connof be used in accessing internal files or
DAM files.

Adjacent values in a data line for list-directed input must
be separated by one or more blanks, a comma, or a slash.
Consecutive blanks are equivalent to single blanks.
Blanks adjacent to a comma or slash are of no significance.
An end-of-record is treated as a blank.

Two adjacent commas with no intervening characters
except blanks will leave the corresponding item in the
input list unchanged. A slash terminates a READ, leaving
any remaining items in the input list unchanged. A list-
directed READ continues until a slash is encountered or
all the items in the input list have been satisfied. If there
are not enough values to complete the READ, an error will
occur unless the data is being read from the terminal, in
which case the program will wait lor the remaining values
to be typed in.

Repeat counts may modify data items under list-directed
i n p u I.

r*c

represents r consecutive occurrences of the input value c.
II c is omitted, r null values are read in, leaving the next r
elements of the input lisl unchanged. No blanks may
appear between r, *, and c-

INTRINSIC FUNCTIONS 36

INTRINSIC FUNCTIONS
It is impossible to fully describe the ¥77 intrinsic func­
tions in the space available here. Therefore it is important
thai the following be used only as a reminder, not as a
source of primary information.

To get more information about a known function, find it in
the list of functions by name, then proceed to the list of
functions by category.

To identify the function for a particular task, locate that
task in the list of functions by category.

Most functions take one argument. For each function
taking more than one, there is a note describing the argu­
ments required. Where a note applies to a generic func­
tion, it applies to all specific functions under the generic.

Only named specific functions can be passed as argu­
ments to subprograms. Intrinsic functions for type
conversion, selection of a maximum or minimum value,
lexical comparison, logical operation, shifting, truncation
of bits, and determination of a data item's memory
address cannot be passed as arguments.

37 INTRINSIC FUNCTIONS

F77 intrinsic funct
Function
ABS
ACOS
AIMAG
AINT
ALOG
ALOG10
AMAX1 (10)
AMAXO (10)
AMIN1 (10)
AMINO (10)
AMOD (11)
AND (1)
ANINT
ASIN
ATAN
ATAN2 (2)
CABS
CCOS
CDABS
CDCOS
CDEXP
CDLOG
CDSQRT
CDSIN
CEXP
CHAR
CLOG
CMPLX (3)
CONJG
COS
COSH
CS1N
CSQRT
DABS
DACOS
DASIN
DATAN
DATAN2 (2)

ions listed by name
Category
Absolute Value
Arccosine
Imag. Part Extraction
Truncation to Whole No.
Logarithm (Natural)
Logarithm (Common)
Largest Value
Largest Value
Smallest Value
Smallest Value
Remainder
AND (Bitwise)
Nearest Whole Number
Arcsine
Arctangent
Arctangent of Quotient
Absolute Value
Cosine
Absolute Value
Cosine
Exponentiation
Logarithm (Natural)
Square Root
Sine
Exponentiation
Conversion to Character
Logarithm (Natural)
Conversion to Complex
Conjugate
Cosine
Hyperbolic Cosine
Sine
Square Root
Absolute Value
Arccosine
Arcsine
Arctangent
Arctangent of Quotient

INTRINSIC FUNCTIONS 38

DBLE
DCMPLX (3)
DCONJG
DCOS
DCOSH
DDIM (4)
DEXP
DIM (4)
DIMAG
DINT
DLOG
DLOG10
DMAX1 (10)
DMINI (10)
DMOD (11)
DNINT
DPROD (5)
DREAL
DREAL
DSIGN (13)
DSIN
DSINH
DSQRT
DTAN
DTANH
EXP
FLOAT
IABS
ICHAR
IDINT
IDIM (4)
IDNINT
IFIX
INDEX (6)
INT
INTS
INTL
ISIGN (13)
LEN
LGE (7)

Conversion to Dble. Prec.
Conversion to Complex *16
Conjugate
Cosine
Hyperbolic Cosine
Positive Difference
Exponentiation
Positive Difference
Imag. Part Extraction
Truncation to Whole No.
Logarithm (Natural)
Logarithm (Common)
Largest Value
Smallest Value
Remainder
Nearest Whole Number
Product (Double Precision]
Conversion to Dble. Prec.
Real Part Extraction
Sign Transfer
Sine
Hyperbolic Sine
Square Root
Tangent
Hyperbolic Tangent
Exponentiation
Conversion to Real
Absolute Value
Conversion to Integer
Conversion to Integer
Positive Difference
Nearest Integer
Conversion to Integer
Index of a Substring
Conversion to Integer
Conversion to Short Integer
Conversion to Long Integer-
Sign Transfer
Length of Siring
Lexicaly >=

39 INTRINSIC FUNCTIONS

LGT (7)
LLE (7)
LLT (7)
LOC
LOG
LOG10
LS (8)
LT (9)
MAX (10)
MAXO (10)
MAX1 (10)
MIN (10)
MINO (10)
MINI (10)
MOD (11)
NINT
NOT
OR (1)
REAL
REAL
RS (8)
RT (9)
SHFT (12)
SIGN (13)
SIN
SINH
SNGL
SQRT
TAN
TANH
XOR (1)

Lexically >
Lexically <=
Lexically <
Location in Memory
Logarithm (Natural)
Logarith (Common)
Shift Left
Truncate Left
Largest Value
Largest Value
Largest Value
Smallest Value
Smallest Value
Smallest Value
Remainder
Nearest Integer
NOT (Bitwise)
OR (Bitwise)
Conversion to Real
Real Part Extraction
Shift Right
Truncate Right
Shift
Sign Transfer
Sine
Hyperbolic Sine
Conversion to Real
Square Root
Tangent
Hyperbolic Tangent
XOR (Bitwise)

INTRINSIC FUNCTIONS 40

F77 intrinsic functions listed by category
Category

Absolute
Value

Arccosine

Arcsine

Arctangent

Arctangent
of Quotient

AND (bit)

Conjugate

Conversion
to Character

Conversion
to Complex

Conversion
to Complex*16

Conversion
to Double
Precision

Conversion
to Integer

Conversion
to Integer

Conversion
to Long
Integer

Generic

ABS

ACOS

ASIN

ATAN

ATAN2 (2)

-
CONJG

—

CMPLX [3]

DCMPLX [3

DBLE

INT

—

INTL

Specific

IABS
ABS
DABS
CABS
CDABS

ACOS
DACOS

ASIN
DASIN

ATAN
DATAN

ATAN 2
DATAN2

AND (1]

CONJG
DCON|C

CHAR

-
-
—
—
-

] -

—
:
-
—
—
—
—
DREAl.

-
INT
ll-'IX
[DINT

—
-
ICHAR

—
—
—
—
—

Arg. type

Integer
Real
Double
Complex
Complex'

Real
Double

Real
Double

Real
Double

Real
Double

Integer

Complex
Complex*

Integer

Integer
Real
Double
Complex
Complex'

Integer
Real
Double
Complex
Complex'

Integer
Real
Double
Complex
Complex'

Integer
Real
Real
Double
Complex
C lomplex'

Characte

Integer
Real
Double
Complex
Complex*

16

16

16

Hi

16

!(>

Id

Result type

Integer
Real

Double
Real

Double
Real
Double

Real
Double

Real
Double

Real
Double

Integer

Complex
Complex*16

Character

Complex
Complex
Complex
Complex
Complex

Complex* Hi

Complex* Hi
Complex*16
Complex*l(>

Coniplex*"16

Double
Double
Double
Double
Double

Integer
Integer
Integer
Integer
Integer
Integer

Integer

IntegerM
lnteger*4
Integer*4
Integer*4
Integer**!

41 INTRINSIC FUNCTIONS

Conversion
to Real

Conversion
to Short
Integer

Cosine

Exponentiation

Hyperbolic
Cosine

Hyperbolic
Sine

Hyperbolic
Tangent

Imag. Part
Extraction

Index of a
Substring

Largest Value

Largest Value

Length
Lexically >=

Lexically >

Lexically O

Lexically <

Location
in Memory

Logarithm
(common)

REAL

INTS

COS

EXP

COSH

SINH

TANH

—

—

MAX [10)

-

-
-
-
-
-
-

LOG10

FLOAT

—
SNGL

—
REAL

-
—
-
—
-
COS

ncos
ccos
CDCOS

EXP
DEXP
CEXP
CUEXP

COSH
DCOSH

SINH
DSINH

TANH

DTANH

A IMAG
DIMAG

INDEX (6)

MAXO
AMAXl
DMAX1

AMAXl) (10)
MAX! (10)

LKN
LGE |7]

LGT (7)

I.I.E (7]

1.I.T (71

l.OC

Al.OGlU
DLOG10

Integer
Real
Double
Complex
Complex'
Integer
Real
Double
Complex
Complex*

Real
Double
Complex

Complex*
Real
Double
Complex
Complex*

Real
Double

Real
Double

Real
Double

Complex
Complex*

Charactei

Integer

Real
Double

Integer
Real

Charactei
Charactei

Charactei

Charactei

Charactei

Am bill
CHAR oi
LUG" I

Real
Double

16

16

IB

16

16

Real
Real
Real
Real
Real

Integer*^

Integer*2
lnteger*2
Integer*2
Integer*2

Real
Double
Complex
Complex* Ifi

Real
Double

Complex
Complex*16

Real
Double
Real
Double

Real
Dou! te
Real
Double

Integer

Integer
Real
Double

Real
Integer

Integer

Logical

Logical

Logical
Logical

Integer*^

Real
Double

INTRINSIC FUNCTIONS 42

Logarithm
(natural)

Nearest
Integer

Nearest
Whole No.

NOT (bit)

OR (bit)

Positive
Difference

Product
(Doub. Prec.)

Real Part
Extraction

Remainder

Shift

Shift Left

Shift Right

Sign Transfer

Sine

Smallest
Value

Smallest
Value

Square Root

Tangent

Truncation
to Whole No.

Truncate
Left

Truncate
Right

XOR (bit)

LOG

NINT

ANINT

-
-
DIM (4)

—

-

MOD(l l)

-
-

SIGN (13)

SIN

MIN(10)

-

SQRT

TAN

AINT

—

—

-

ALOG
DLOG
CLOG
CDLOG

NINT
1DNINT

ANINT
DNINT

NOT
OR [11

[DIM
DIM
DDIM

DPROD |5]

REAL
DREAI.

MOD
AMOD
DMOD

SHFT (12]

I.S |8]

RS (8)
ISIGN
SIGN

DSIGN

SIN
DSIN
CSIN
CDSIN

MINO
AMINl
DMINl

AMINO (10)
MINI (10]

SQRT
DSQRT
CSQRT
CDSQRT

TAN
DTAN

AIN'T
DINT

IT (9)

RT(9)

XOR |1]

Real
Double
Complex
Complex*lG

Real
Double

Real
Double

Integer

Integer

Integer
Real
Double

Real

Complex

Gomplex*16
Integer
Real
Double

Integer
Integer

Integer

Integer
Real
Double

Real
Double
Complex
Cnmplex*16

Integer
Real
Double

Integer
Real

Real
Double
Complex
Complex* 10

Real
Double
Real
Double

Integer

Integer

Integer

Real
Double
Complex
Complex*16

Integer
Integer

Real
Double

Integer

Integer

Integer
Real
Double

Double

Real
Double
Integer
Real
Double

Integer
Integer

Integer
Integer
Real
Double

Real

Double
Complex
ComplexMti

Integer
Real
Double

Real
Integer

Real
Double
Complex
CoinplexMG

Real
Double

Real
Double

Integer

Integer

Integer

43 INTRINSIC FUNCTIONS

Notes for multi-argument functions

1. Any number of arguments.
2. Two arguments. Returns the arctangent (in

radians) of their quotient.
3. One or two arguments. With one argument, the

argument becomes the real part, and the imag­
inary part is zero. With two arguments, ARGl
becomes the real part, and ARG2 the imaginary
part.

4. Two arguments. ARG2 is subtracted from ARGl.
If the difference is positive, it is returned; if not,
the value zero is returned.

5. Two arguments. The arguments are multiplied
and the result is returned in DOUBLE PRECISION
form.

6. Two CHARACTER arguments. If ARG2 is a sub­
string of ARGl, the position in ARGl where ARG2
begins is returned. If not, the value zero is
returned.

7. Two CHARACTER arguments. If they have the
specified relationship in the ASCII collating
sequence, .TRUE, is returned; otherwise .FALSE.
is returned.

8. Two arguments. Shifts ARGl by the number of
bits specified in ARG2. Vacated places are filled
with zeroes.

9. Two arguments. Preserves the left (LT) or right
[RT] ARG2 bits of ARGl, and sets the rest to zero.

10. Takes any number of arguments.
11. Two arguments. Returns the remainder when

ARC 1 is divided by ARG2.
12. Two or three arguments. Similar to LS and RS (see

Note 8) except that it can shift in either direction
and can perform two shifts rather than one.
If ARG2 is negative, the first shift is to the left; if it
is positive, the shift is to the right; if it is zero, no

F77 COMPILER 44

shift occurs.
If ARG3 appears, the shift specified by it will
occur after the shift specified by ARG2 is
complete.

13. Two arguments. The value returned has the
magnitude of ARGl and the sign of ARG2. If
ARGl is zero, the result is zero, which is neither
positive or negative.

THE F77 COMPILER
The ¥77 compiler is invoked by the command:

F77 pathname [-option]...

pathname The pathname of the FORTRAN 77
source program to be compiled.

options Mnemonics for the options controlling
compiler functions.

The F77 compiler options are as follows. In each case, the
abbreviation for each option is in rust, and the default is
underlined.

-BIG / -NOBIG

Determines code generated for dummy array references in
a subprogram.

-BJINARY] [argument]

The argument may be:

pathame Object code will be written to the file
pathname.

YES Object code will be written to the file
named B _ program, where program is
the name of the source file.

NO No binary file will be created. Specified
when only a syntax check is desired.

When no -B option is given, or -B without an argument is
given, -B YES will be presumed.

45 F77 COMPILER

-DCLVAR / -NODCLVAR

Controls flagging of undeclared variables.

-DEBUG / -NODLBUG

Controls generation of code allowing the program to run
under the symbolic debugger.

-DOl / -NOD01

Controls the type of DO-loop which the compiler will
produce.

-DYNM / -SAVE

Determines data-storage mode: dynamic or static.

-ERRLIST / -NOERRLIST

Controls generation of an errors-only file. The file will be
named as described under -L YES.

-ERRTTY/-NOERRTTY

Controls printing of error messages at the terminal.

-EXPLIST / -NOEXPLIST (Implies -L)

Controls insertion of a pseudo-assembly code listing into
the source listing.

-INTL / -INTS

Determines default lengths for type INTEGER data items
whose length is not explicitly declared.

-L[ISTING] [argument]

Controls creation of the source listing file. The argument
may be:

pathname

YES

TTY

SPOOL

NO

Listing will be written to the File path­
name.
Listing will be written to a file named L _
program, where program is the name of
the source file.
The listing will be printed at the user
terminal.
The listing will be spooled directly to the
line printer. Default SPOOL arguments
are in effect.
No listing file will be generated.

When no -L option is given. -L NO will be presumed.
When -L is given with no argument, -L YES will be
presumed.

F77 COMPILER 46

-LOGL / -LOGS

Determines default lengths for type LOGICAL data items
whose length is not explicitly declared, and for the logical
constants.

-OPTIMIZE / -NOOPTIMIZE

Controls the optimization phase of the compiler.

-PRODUCTION /-NOPRODUCTION

Alternative option controlling code for the debugger.
-PRODUCTION is similar to -DEBUG, except that the
code generated will not permit insertion of statement
break points.

-RANGE / -NORANGE

Controls error checking for oul-of-bounds values of array
subscripts and character substring indexes.

-SILENT /-NOSILENT

Suppresses WARNING messsages.

-STATISTICS / -NOSTATISTICS

Controls printout of compiler statistics.

-UPCASE / -LCASE

Controls mapping of lowercase to uppercase letters in a
source program.

-XREF / -NOXREF (Implies -L)

Controls generation of a cross reference.

-64V / -321

Controls addressing mode to be used in the object code.

47 ASCII CODES

ASCII COLLATING SEQUENCE

Octal
V a i u e

240
241

242
243

244
245

246
247

250
251

252
253

254
255

256
257

260
261

262

263

264
265

266
267

270
271

272
273

274
275

276
277

ASCII Charac

ASCII
Character

.SP.

!

$
%
&

(
)
*
+

,
-

0
1

2
3

4
5

6
7
8
9

;
<

>
1

Octal
Va lue

300
301

302
303

304

305

306
307

310
311

312
313

3 14
315

3 10
3 17

320
321

322

323

324
325

326
327

330
331

332
333

334
335

336
33 7

ter Set (P n

ASCII
Character

@
A

B
C

D
E

F
G
H
I

I
K

L
M

N
O

P

Q
R
S
T
U
V
W
X
Y

Z

[
\
]

_
-

nting)

Octa l
Va lue

340
341

342
343

344

345

346
347

350
351

352
353

354
355

356
357

360

361

362

363

364
365

366
367

370
371

372
373

374
375

376
377

ASCII
Character

'
a

b
c

d
e

f

g
h
i

J
k

1
m

n
0

P
q
r
s
t
u
V

w
X

y
z

I
1

)

DEL

POWERS OF TWO 48

POWERS OF TWO
2"
1
2
4
8
16
32
64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824
2147483648
4294967296

n
0
1
2

3
4
5
6
7

8
9
10
1 I
12

13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

2 "
1
.5
.25
.125
.0625
.03125
.015625
.0078125
.00390625
.001953125
.0009765625
.00048828125
.000244140625
.0001220703125
.00006103515625
.000030517578125
.0000152587890625
.00000762939453125
.000003814697265625
.0000019073486328125
.00000095367431640625
.000000476837158203125
.0000002384185791015625
.00000011920928955078125
.000000059604644775390625
.0000000298023223876953125
.00000001490116119384765125
.000000007450580596923825625
.0000000037252902984619128125
.00000000186264514923095640625
.000000000931322074615478203125
.0000000004656610373077391015625
.00000000023283051865386955078125

Prime Computer, Inc., Technical Publications Department
500 Ola Connecticut Path, Framingham, MA 01701

	Front Cover
	
	Copyright
	1
	Table of Contents
	2
	Typographic Conventions
	Legal Character Set
	3
	Line Format
	4
	Data Types
	5
	6
	7
	Statement Label
	Operands
	8
	Operators
	9
	10
	Type Conversion
	Program Composition
	11
	12
	Program Specification Statements
	13
	14
	15
	16
	17
	18
	Input/Output Statements
	19
	20
	21
	22
	23
	24
	25
	Formats
	26
	27
	28
	29
	30
	31
	32
	33
	34
	List-Directed I/O
	35
	Intrinsic Functions By Name
	36
	37
	38
	39
	Intrinsic Functions By Category
	40
	41
	42
	43
	The F77 Compiler
	44
	45
	46
	ASCII Collating Sequence
	47
	Powers of Two
	48
	
	Back Cover

